
5304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

A New Necessary Condition for Threshold Function Identification
Chia-Chun Lin , Chin-Heng Liu, Yung-Chih Chen , and Chun-Yao Wang, Member, IEEE

Abstract—This article proposes a new necessary condition and
the corresponding speedup strategies to the threshold function (TF)
identification problem. The state-of-the-art to this identification problem
could be very time-consuming when the function-under-identification is
a non-TF with the unateness property. The proposed new necessary con-
dition can be seamlessly integrated into this identification algorithm. As
compared with the state-of-the-art, the improved identification algorithm
with the proposed necessary condition can more effectively and efficiently
detect non-TFs. Furthermore, according to the experimental results, the
ratio of CPU time overhead in the process of checking the proposed
necessary condition for identifying all the 8-input TF is only 0.1%.

Index Terms—Digital circuit, linear threshold logic gate, SAT
solver, threshold function (TF) identification.

I. INTRODUCTION

Traditionally, people use Boolean logic to represent switching
functions. However, in addition to Boolean logic, threshold logic
can also represent switching functions. Instead of using multiple
Boolean logic gates, a single linear threshold gate (LTG), as the one in
Fig. 1(a), can represent a complex function. The elements of an LTG
are n binary inputs x1, x2, . . . , xn with weights w1, w2, . . . , wn, and a
threshold value T . The output f is 1 if the summation of each product
xi ·wi is greater than or equal to the threshold value T . Otherwise, the
output f is 0. The functionality of an LTG could be changed when
we modify any of these parameters, as shown in Fig. 1(b) and (c).
Therefore, there are different functions, but not all, that can be rep-
resented by a single LTG. A function that can be represented by an
LTG is called threshold function (TF). Identification of a TF and
then representing it in its canonical form facilitate the succeeding
logic synthesis and equivalence checking problems [1], [3], [8], [9].

There were some studies focusing on the TF identification and
threshold logic network synthesis in [2]–[6] and [10]–[12]. For exam-
ple, Neutzling et al. [10] proposed an algorithm to assign the weights
and threshold value of a TF. The authors listed the inequality system
from the irredundant sum-of-products (ISOPs) form of a function,
and searched for the weights and threshold value without violating the
consistency of the inequality system. Once an assignment of weights
and threshold value is obtained, the function is identified as a TF,

Manuscript received June 17, 2019; revised August 30, 2019 and October
28, 2019; accepted December 28, 2019. Date of publication January 8, 2020;
date of current version November 20, 2020. This work was supported by
the Ministry of Science and Technology of Taiwan under Grant MOST
107-2221-E-155-046, Grant MOST 108-2221-E-155-047, Grant MOST 106-
2221-E-007-111-MY3, and Grant MOST 108-2218-E-007-061. This article
was recommended by Associate Editor Z. Zhang. (Corresponding author:
Chia-Chun Lin.)

Chia-Chun Lin, Chin-Heng Liu, and Chun-Yao Wang are with the
Department of Computer Science, National Tsing Hua University,
Hsinchu 30013, Taiwan (e-mail: chiachunlin@gapp.nthu.edu.tw;
posada2968@yahoo.com.tw; wcyao@cs.nthu.edu.tw).

Yung-Chih Chen is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (e-mail:
ycchen.cse@saturn.yzu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2020.2964768

and the assignment represents the weights and threshold value of the
corresponding LTG; otherwise, the function is still undetermined.

Recently, Liu et al. [4] founded that some TFs cannot be correctly
identified by the work of [10]. This is because the flip situation
occurred in the weight assignment procedure for these TFs. The flip
situation could cause the weight assignment procedure in the work
of [10] to be inefficient or even failed. Hence, Liu et al. [4] improved
the algorithm by first simplifying the system of inequalities. Then,
they proposed a new weight assignment procedure that incrementally
searches a feasible solution for the system of inequalities. This proce-
dure is similar to the breadth-first search (BFS) algorithm, traveling
along with all the possibilities of the paths. Liu et al. [4] also proposed
several strategies to bound the searched paths without traversing the
whole solution space. Fig. 2 is an example showing the new weight
assignment procedure in the work of [4]. In this new weight assign-
ment procedure, however, if a feasible assignment cannot be found
when the weights reach their theoretical upper bound values, the func-
tion will be identified as an undetermined function. Although the new
weight assignment procedure in [4] solved the problem of flip sit-
uation and identified all the TFs with eight inputs, the procedure
could be time-consuming when the function-under-identification is a
non-TF with the unateness property. Both the works in [4] and [10]
used the property of unateness to accelerate the process of TF iden-
tification because unateness is a necessary condition for being TFs.
Once the non-TFs have the unateness property, the TF identification
flow in [4] cannot remove the function-under-identification in the
preprocessing stage. As a result, the succeeding weight assignment
procedure will continue until one weight reaches its theoretical upper
bound. An example illustrating this weight assignment procedure for
non-TFs is shown in Fig. 3. We can see that the procedure searches
the weights incrementally and iteratively. According to a table in the
work of [7], which is Table I in this article, we find that the number
of NP-equivalence classes of unate functions with five variables is
16 143. However, the number of NP-TFs of five variables is only 92.
This indicates that many unate functions are non-TFs. Passing unate-
ness check as a criteria to run the weight assignment procedure is not
appropriate though. Thus, to improve the TF identification algorithm,
a more efficient method for screening out non-TFs is desired. As a
result, in this article, in addition to the known unateness property,
we propose a new necessary condition for a function being a TF, and
use it to identify non-TFs earlier in the improved TF identification
algorithm.

II. PRELIMINARIES

A. Hyperplane and Half-Space

Hyperplane and half-space have close connections with an LTG,
and they play important roles in the succeeding discussion. Therefore,
in this section, let us explain the relationship among the hyperplane,
half-space, and LTG first.

An LTG can be represented as a hyperplane H in an n-dimensional
space, i.e., H :

∑n
i=1 xiwi = T . The half-spaces described by

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 20,2020 at 10:39:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0136-9825
https://orcid.org/0000-0002-3934-800X

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5305

TABLE I
NUMBER OF n-INPUT FUNCTIONS IN DIFFERENT CLASSES [7]

Fig. 1. (a) LTG model. (b) Boolean function f = x1x2 +x1x3 +x1x4 +x2x3 +
x2x4 represented by an LTG. (c) Another Boolean function f = x1x2 +x1x3 +
x1x4 + x2x3x4 represented by an LTG.

Fig. 2. Weight assignment process for f = x1x2x3 + x1x2x4 + x1x2x5x6 +
x1x2x5x7 + x1x3x4 + x1x3x5x6 + x1x4x5x6 + x2x3x4 + x2x3x5x6 + x2x4x5x6
from [4]. There are only five variables in a 7-input function because the
variable ordering is x1 = x2 > x3 = x4 > x5 > x6 > x7.

∑n
i=1 xiwi ≥ T and

∑n
i=1 xiwi < T are named as the positive

half-space H+ and the negative half-space H−, respectively. When
any point located in H+ is applied to the LTG, the output is 1;
otherwise, the output is 0. This is the linear separativity property
of TFs.

B. Chow’s Parameter

Chow’s parameter P(f) of a function f (x1, . . . , xn) is a vector
defined in (1)

P(f) = (p1(f), p2(f), . . . , pn(f); p0(f)) (1)

where pi(f), i = 1 ∼ n, is the number of minterms in the on-set of
f for which xi = 1, and p0(f) is the total number of minterms in
the on-set of f . In fact, Chow’s parameter provides some clues in TF
identification. It is clear that the variable xi affects function f more
when pi(f) is larger than the others. Therefore, the largest weight in
an LTG is always associated with the input having the largest pi(f).

C. Shannon’s Expansion

Shannon’s expansion decomposes a function f (x1, . . . , xn) in the
n-dimension Boolean space Bn as (2)

f (x1, . . . , xn) = Axixj + Bxix
′
j + Cx′

ixj + Dx′
ix

′
j (2)

Fig. 3. Weight assignment procedure continues until one of the weights
reaches the upper bound when the function is a non-TF.

Fig. 4. (a) LTG model for a TF. (b) LTG model for cofactor function
f (xi = 1, xj = 0). (c) LTG model for cofactor function f (xi = 0, xj = 1).
(d) Relationship between two hyperplanes corresponding to the LTG in (b) and
the LTG in (c).

for all xi, xj, where A, B, C, and D are four cofactor functions,
respectively. According to the definition of Chow’s parameter, we can
see that pi(f) equals the total number of minterms in the on-set of A
and B in Bn−2. Similarly, pj(f) equals the total number of minterms
in the on-set of A and C in Bn−2. Both previous works [4], [10]
assigned initial values to the weights in the weight assignment proce-
dure based on Chow’s parameter. However, two variables having the
same Chow’s parameter do not imply that these two variables have the
same weight in its LTG. For example, Chow’s parameter of function
ab + cd is (5, 5, 5, 5; 7). Although variables a and c have the same
value in its Chow’s parameter, they come from different components
in the Shannon’s expansion. In fact, a more precise way to figuring
out the contributions of two variables to the function is to compare
the two cofactor functions f (xi = 1, xj = 0) and f (xi = 0, xj = 1).
More details about this idea will be presented in Section III.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 20,2020 at 10:39:07 UTC from IEEE Xplore. Restrictions apply.

5306 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

III. NONTHRESHOLD FUNCTION IDENTIFICATION

A. New Necessary Condition for Function Being TF

Definition: Two functions f and g have the implication relation if
and only if f ⊆ g or g ⊆ f .

Theorem 1: If an n-input function f(x) is a TF, then its two cofac-
tor functions, f (xi = 1, xj = 0) and f (xi = 0, xj = 1), have the
implication relation, for all input pairs xi, xj.

Proof: Since f (x) is a TF, it can be represented as an LTG by
definition. Without loss of generality, we assume that the weights
are w1, w2, . . . , wn with respect to input variables x1, x2, . . . , xn,
and the threshold value is T , as shown in Fig. 4(a). To obtain the
corresponding LTG for the cofactor function f (xi = 1, xj = 0), we
remove the inputs xi, xj and the weights wi, wj from the original LTG,
and update the threshold value. Since the input xi = 1 contributes
the weight wi to the weight summation, the threshold value T needs
to be updated as (T − wi) after removing xi, xj and wi, wj. The
resultant LTG of f (xi = 1, xj = 0) is shown in Fig. 4(b). Similarly,
the resultant LTG of cofactor function f (xi = 0, xj = 1), as shown
in Fig. 4(c), is obtained by removing xi, xj and wi, wj, and updat-
ing the threshold value as (T − wj). According to the explanation in
Section II-A, we have known that there exists a corresponding hyper-
plane for any given LTG. The only difference between the LTGs in
Fig. 4(b) and (c) is the threshold value. That is, the hyperplanes rep-
resented by these two LTGs are parallel to each other, as shown in
Fig. 4(d). Since these two hyperplanes with respect to the LTGs of
cofactor functions f (xi = 1, xj = 0) and f (xi = 0, xj = 1) are par-
allel to each other, the positive half-space of the upper hyperplane
will be a subset of the positive half-space of the lower hyperplane.
As a result, we can conclude that these two cofactor functions have
the implication relation for any input pairs xi, xj without knowing
the position of each LTG’s hyperplane.

B. Implication Relation Check by Using SAT Solvers

In Theorem 1, we have known that the satisfaction of implication
relation for every pair of input variables is the necessary condition for
being a TF. The next issue to be dealt with is how to check whether
this relation holds or not efficiently. In this article, we model this
problem as a SAT problem and use SAT solvers [13] to obtain the
result efficiently.

When two cofactor functions g and h of a function f do not have
the implication relation, there exist two input patterns a1 and a2 such
that g(a1) = 1, h(a1) = 0 and g(a2) = 0, h(a2) = 1. We construct a
network, as shown in Fig. 5, and use SAT solvers to check whether
the cofactor functions g and h have the implication relation or not.
First, the output of the network in Fig. 5 is set to be 1. When the SAT
solver returns a satisfiable input pattern for the conjunctive normal
form (CNF) of the network, it means that there exists an input pattern
a1 such that g(a1) = 1, h(a1) = 0, and exists an input pattern a2 such
that g(a2) = 0, h(a2) = 1. As a result, the two cofactor functions
do not have the implication relation, and f is not a TF. If the SAT
solver returns UNSAT, then g and h have the implication relation.

C. MORE Efficient Method

To realize an n-input function-under-identification f as a non-TF
in the improved identification algorithm, we have to examine every
pair of input variables, which is with the time complexity of O(n2).
In fact, we could obtain the same result more efficiently without
checking all of these input pairs under a certain situation. The idea
behind this is transitive law. We use Theorem 2 to express this idea.

Theorem 2: Given an n-input function f (x), if f (xi = 1, xj = 0) =
f (xi = 0, xj = 1) and f (xj = 1, xk = 0) = f (xj = 0, xk = 1), then
f (xi = 1, xk = 0) = f (xi = 0, xk = 1), for all inputs xi, xj, xk.

Fig. 5. Model for checking the implication relation of function g and
function h.

Proof: The premises are indexed as (3) and (4)

f (xi = 1, xj = 0) = f (xi = 0, xj = 1) (3)

f (xj = 1, xk = 0) = f (xj = 0, xk = 1). (4)

First, we rewrite (3) as f (xi = 1, xj = 0, xk = 0) = f (xi = 0, xj = 1,

xk = 0) under xk = 0. Then, we rewrite (4) as f (xi = 0, xj = 1,

xk = 0) = f (xi = 0, xj = 0, xk = 1) under xi = 0. Hence, we have

f (xi = 1, xj = 0, xk = 0) = f (xi = 0, xj = 0, xk = 1) (5)

by transitive law. Similarly, we rewrite (3) as f (xi = 1, xj = 0, xk =
1) = f (xi = 0, xj = 1, xk = 1) under xk = 1, and rewrite (4) as
f (xi = 1, xj = 1, xk = 0) = f (xi = 1, xj = 0, xk = 1) under xi = 1.
Hence, we have

f (xi = 1, xj = 1, xk = 0) = f (xi = 0, xj = 1, xk = 1) (6)

by transitive law again. As a result, by examining (5) and (6), no
matter what the value of xj is, f (xi = 1, xk = 0) = f (xi = 0,

xk = 1).
By Theorem 1, we have known that a function-under-identification

is a non-TF if a pair of input variables whose cofactor functions do
not have the implication relation was found. Theorem 2 states that
some redundant computations can be skipped when certain cofactor
functions are equivalent. Theorem 3 then connects Theorem 1 with
Theorem 2, and is used to facilitate the detection of the proposed
necessary condition.

Theorem 3: Given two variables xi and xj in a function f (x1,

, . . . , xn) with their corresponding Chow’s parameter pi(f) and pj(f),
if pi(f) equals pj(f), then these two cofactor functions f (xi = 1, xj =
0) and f (xi = 0, xj = 1) either are equivalent or do not have the
implication relation.

Proof: Here, we use the contraposition to prove this theorem. First,
we rewrite this theorem as the following statement:

P → (Q1Q̄2 + Q̄1Q2) (7)

where P, Q1, and Q2 represent pi(f) equals pj(f), f (xi = 1,

xj = 0) and f (xi = 0, xj = 1) are equivalent, and f (xi = 1, xj = 0)

and f (xi = 0, xj = 1) do not have the implication relation, respec-
tively. Equation (7) can be rewritten as (8) by contraposition

(Q1Q2 + Q̄1Q̄2) → P̄ (8)

where Q1Q2+Q̄1Q̄2 = Q1Q̄2 + Q̄1Q2. However, in (8), Q1Q2 means
that two cofactor functions f (xi = 1, xj = 0) and f (xi = 0, xj = 1)

are equivalent, but do not have the implication relation, which con-
flicts with itself. Therefore, we have Q1Q2 = 0 and (8) can be
simplified as (9)

(Q̄1Q̄2) → P̄. (9)

Hence, in the following paragraphs, we only need to prove (9) for this
theorem. That is, if the two cofactor functions are not equivalent, and
they have the implication relation, the corresponding Chow’s param-
eter pi(f) �= pj(f). Note that when two cofactor functions are not

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 20,2020 at 10:39:07 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5307

TABLE II
THEORETICAL WEIGHT UPPER BOUND FOR n-INPUT TFS [7]

Fig. 6. Required CPU time for identifying all the 600 000 non-TFs under
different weight upper bounds in [4].

equivalent, and have the implication relation, one cofactor function
must be a proper subset of the other cofactor function.

According to Shannon’s expansion in (2) of Section II-E, we know
that pi(f) equals the total number of minterms in the on-set of A and
B in Bn−2, and pj(f) equals the total number of minterms in the on-
set of A and C in Bn−2. Similarly, the number of minterms in the
cofactor function f (xi = 1, xj = 0) equals the number of minterms in
the on-set of B in Bn−2, and the number of minterms in the cofactor
function f (xi = 0, xj = 1) equals the number of minterms in the on-
set of C in Bn−2. Since given that one cofactor function is a proper
subset of the other cofactor function, the number of minterms in the
on-set of these two cofactor functions are different. In other words,
the number of minterms in the on-set of B in Bn−2 is not equal to
the number of minterms in the on-set of C in Bn−2. Next, we add
the minterms in the on-set of A in Bn−2 to the on-sets of B, and C
in Bn−2. As a result, the total number of minterms in the on-set of
A and B in Bn−2 is not equal to that of A and C in Bn−2, i.e., the
corresponding Chow’s parameter pi(f) �= pj(f).

IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ language.
The experiments were conducted on a 2.6-GHz Linux platform
(CentOS 6.7). Since the proposed necessary condition focuses on
the identification of non-TFs, we randomly generate 100 000 unate
but non-TFs for each group of functions with the same number of
inputs from 10 to 15 inputs as the benchmarks. The total amount of
benchmarks is 600 000. We compare the CPU time for identifying
these functions with the state-of-the-art [4].

In the identification algorithm of the state-of-the-art, a theoretical
weight upper bound is needed for setting a termination condi-
tion in the weight assignment procedure. If the assigned largest
weight is greater than this theoretical weight upper bound, the
function-under-identification is identified as an undetermined func-
tion. Table II shows the theoretical weight upper bounds for n-input
TFs. However, since these theoretical upper bound values are quite
large, we only set them from 200 to 330 for showing the trend of
the CPU time growth in the work of [4]. Besides, we conducted the
experiments on the functions with no more than 15 inputs because the
previous work of [4] only considered these TFs in the experiments.

TABLE III
CPU TIME COMPARISON FOR IDENTIFYING ALL THE 600 000 NON-TFS

BETWEEN [4] AND OUR APPROACH

In fact, the proposed theorems can be applied to the functions with
more than 15 inputs without significant overheads. Fig. 6 shows the
required CPU time in the identification algorithm of [4] under these
different upper bounds. In these experiments, all the 600 000 non-TFs
are identified as undetermined functions. For achieving this, [4] spent
5793.96 s in total under the largest weight upper bound of 330. In
Fig. 6, we can see that the required CPU time grows significantly with
the increase of this upper bound. Besides, we know that the required
CPU time is still underestimated since we only set the largest upper
bound as 330.

On the other hand, to show the effectiveness and efficiency of
the proposed necessary condition, we also conduct the experiments
for identifying these 600 000 functions using the improved identifi-
cation algorithm. All of these functions are successfully identified as
non-TFs rather than undetermined functions. The required CPU time
is shown in Table III. In Table III, we also show the performance
comparison with/without applying Theorems 2 and 3 in the algo-
rithm. Column 1 lists the number of inputs. Column 2 shows the
required CPU time for identifying these functions by [4] with the
weight upper bound of 330. Column 3 shows the required CPU time
for identifying these functions without applying Theorems 2 and 3.
Column 4 shows the corresponding required CPU time with apply-
ing Theorems 2 and 3 further. According to Table III, [4] spent
5793.96 s to identify all these 600 000 functions as undetermined
functions. The proposed improved algorithm spent 167.58 s to iden-
tify all these functions as non-TFs when only applying Theorem 1.
However, the required CPU time is further reduced to 36.2 s when
Theorems 2 and 3 are also applied. These results demonstrate that
Theorems 2 and 3 elevate the performance of the improved identifica-
tion algorithm significantly. In summary, the speedup of the improved
identification algorithm reaches around 160× as compared with the
state-of-the-art [4].

Note that since the 600 000 non-TFs in the experiments of Table III
were generated randomly, it is possible that a generated non-TF
encountered the worst-case situation in the weight assignment proce-
dure of [4], which is shown in Fig. 3. In our experiments, the non-TFs
in the generated 11-input functions encountered this situation more.
This is the reason why the CPU time for this group of functions is
larger. This is also a good example to demonstrate that the CPU time
bottleneck in this experiment is the occurrence of the worst case like
Fig. 3, rather than the number of inputs in a group.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 20,2020 at 10:39:07 UTC from IEEE Xplore. Restrictions apply.

5308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

TABLE IV
CPU TIME OVERHEAD IN THE IMPROVED IDENTIFICATION

ALGORITHM FOR 1 TO 8-INPUT TFS

Although the improved TF identification algorithm can remove
non-TFs earlier, it may introduce CPU time overhead for the
functions-under-identification that are TFs indeed. In fact, a TF needs
to run the necessary condition checking for much more times than a
non-TF does. This is because every pair of cofactor functions needs
to be examined when the function is a TF. For a non-TF, however, if
we found that one pair of cofactor functions do not have the impli-
cation relation, the checking process can be terminated immediately.
Therefore, in the experiments of the second part, we would like to
show the CPU time overhead in the improved identification algorithm
when identifying all the TFs with 1 to 8 inputs. The experimental
results are shown in Table IV. Column 1 lists the number of inputs.
Column 2 lists the CPU time for identifying all the n-input TFs
in [4]. Column 3 is the CPU time overhead in the improved identifi-
cation algorithm. Column 4 shows the ratio of CPU time overhead.
According to Table IV, we can see that the ratio of CPU time over-
head for identifying all the 8-input TFs is only 0.1%. In other words,
the proposed necessary condition for removing non-TFs will not incur
much CPU time overhead to the original identification algorithm for
TFs. In summary, the proposed ideas in this article complete the
identification algorithm for both TFs and non-TFs.

V. CONCLUSION

The state-of-the-art does not well deal with the TF identification
problem when the function-under-identification is a non-TF. Hence,
in this article, we propose a new necessary condition for a function
being a TF. The checking process for this necessary condition is also

modeled and explained in detail. The experimental results show that
the contributions of this article complete the identification algorithm
for both TFs and non-TFs.

REFERENCES

[1] Y.-C. Chen, R. Wang, and Y.-P. Chang, “Fast synthesis of threshold
logic networks with optimization,” in Proc. 21st Asia South Pac. Design
Autom. Conf. (ASP-DAC), 2016, pp. 486–491.

[2] P.-Y. Kuo, C.-Y. Wang, and C.-Y. Huang, “On rewiring and simplifi-
cation for canonicity in threshold logic circuits,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, 2011,
pp. 396–403.

[3] S.-Y. Lee, N.-Z. Lee, and J.-H. R. Jiang, “Canonicalization of threshold
logic representation and its applications,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Diego, CA, USA, 2018, pp. 1–8.

[4] C.-H. Liu, C.-C. Lin, Y.-C. Chen, C.-C. Wu, C.-Y. Wang, and
S. Yamashita, “Threshold function identification by redundancy removal
and comprehensive weight assignments,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 12, pp. 2284–2297, Dec. 2019.

[5] C.-C. Lin, C.-Y. Wang, Y.-C. Chen, and C.-Y. Huang, “Rewiring for
threshold logic circuit minimization,” in Proc. Design Autom. Test
Europe Conf. Exhibit. (DATE), Dresden, Germany, 2014, pp. 1–6.

[6] C.-C. Lin, C.-W. Huang, C.-Y. Wang, and Y.-C. Chen, “In&Out:
Restructuring for threshold logic network optimization,” in Proc. 18th
Int. Symp. Qual. Electron. Design (ISQED), 2017, pp. 413–418.

[7] S. Muroga, Threshold Logic and its Applications. New York, NY, USA:
Wiley, 1971.

[8] A. Neutzling, J. M. Matos, A. I. Reis, R. P. Ribas, and A. Mishchenko,
“Threshold logic synthesis based on cut pruning,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Austin, TX, USA, 2015,
pp. 494–499.

[9] A. Neutzling, J. M. Matos, A. Mishchenko, A. I. Reis, and R. P. Ribas,
“Effective logic synthesis for threshold logic circuit design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 5, pp. 926–937,
May 2019.

[10] A. Neutzling, M. G. A. Martins, V. Callegaro, A. I. Reis, and R. P. Ribas,
“A simple and effective heuristic method for threshold logic identifica-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 5, pp. 1023–1036, May 2018.

[11] R. O. Winder, “Enumeration of seven-argument threshold functions,”
IEEE Trans. Electron. Comput., vol. EC-14, no. 3, pp. 315–325,
Jun. 1965.

[12] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold network
synthesis and optimization and its application to nanotechnologies,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1,
pp. 107–118, Jan. 2005.

[13] MiniSAT. Accessed: Oct. 28, 2019. [Online]. Available: http://minisat.se/

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on December 20,2020 at 10:39:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

